

Process Scale-up of MSW/CS Blends Conversion into Sugars

LBNL- ABPDU

Ning Sun, Ling Liang, Qian He, Tina Luong, Todd Pray

INL

Chenlin Li, Vicki S. Thompson, Kara Cafferty

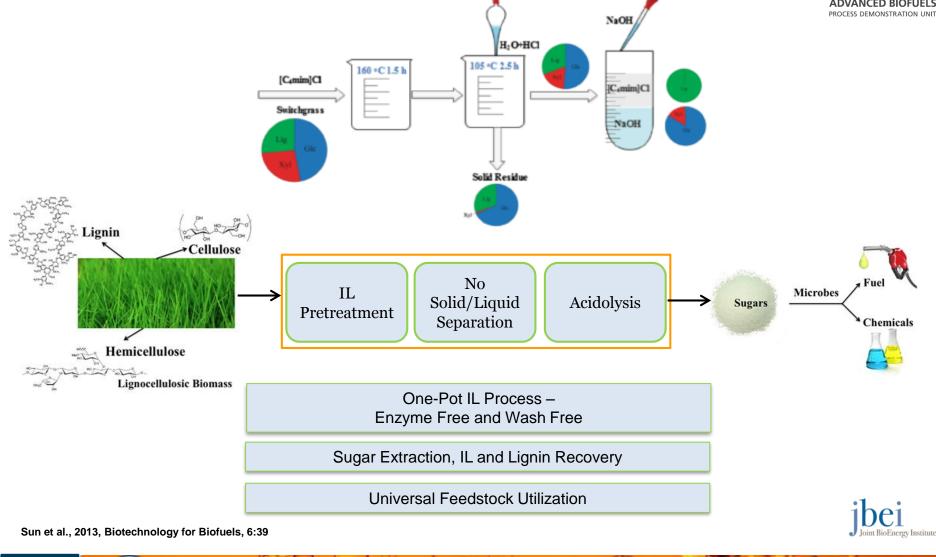
SNL

Feng Xu, Blake Simmons, Seema Singh

Renewable Energy

Background: IL Acidolysis for Biomass Deconstruction

U.S. DEPARTMENT OF

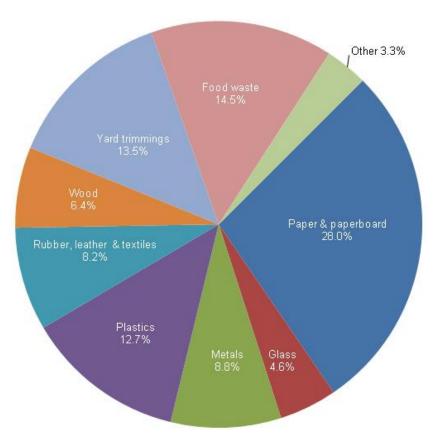

Energy Efficiency &

Renewable Energy

mm

BERKELEY LAB

Low Cost Feedstocks - MSW


Advantages

- Year-round availability
- Low or negative cost
- Collection infrastructure
- Abundance and renewable

Disadvantages

- Highly variable
 - Season
 - Year
 - Region
- Low quality
 - Sorting
 - Upgrading

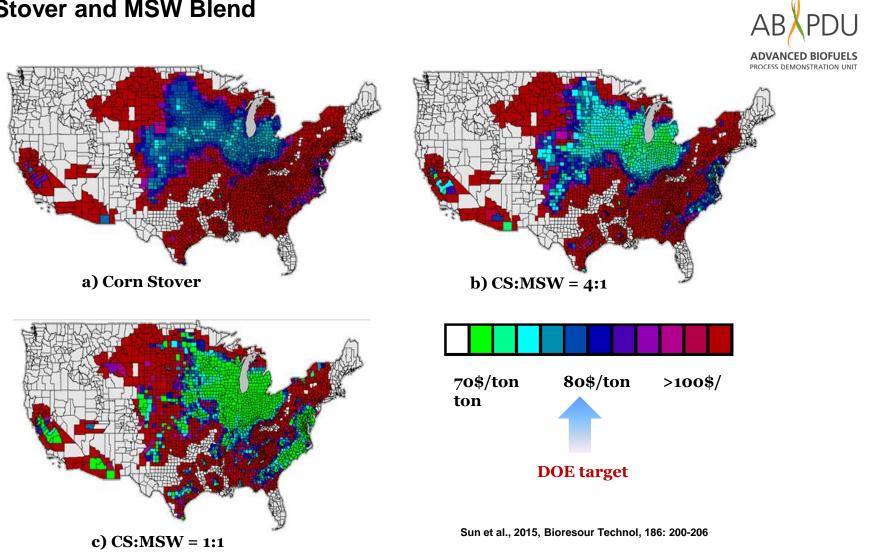
Figure 4. Total MSW Generation (by material), 2011 250 Million Tons (before recycling)

Source: http://www.epa.gov/epawaste/nonhaz/municipal/ index.htm

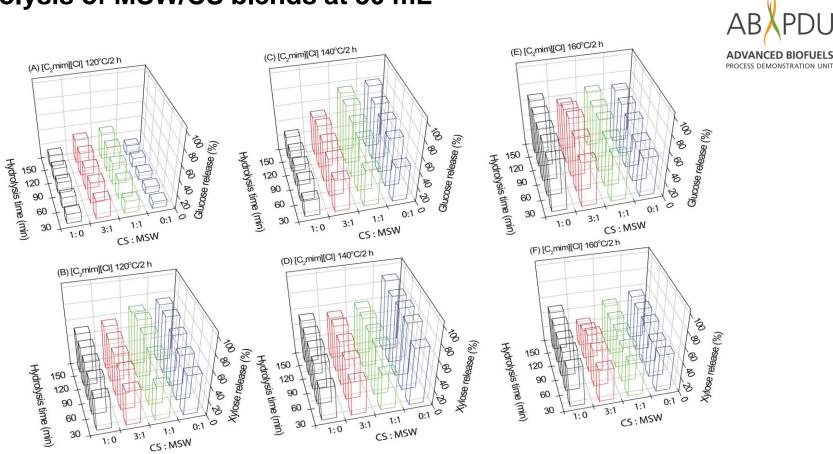
MSW/CS Blends Compositions FY14

CS/MSW	Ash (%)	Glucan	Xylan (%)	Glucan+Xylan
		(%)		(%)
100:0	3.0	33.2	20.8	50.8
90:10	3.8	35.5	19.7	55.2
80:20	4.6	37.7	18.6	56.3
70:30	5.4	40.0	17.6	57.6
60:40	6.2	42.2	16.5	58.7
50:50	7.0	44.5	15.4	59.9
0:100	10.9	50.8	10.0	60.8

MSW: Paper mix waste materials containing glossy paper, non-glossy paper, glossy cardborad, non-glossy cardboard


• MSW/CS blends have the great potential to meet quality requirements.

Sun et al., 2015, Bioresour Technol, 186: 200-206


Least Cost Formulation Output for Midwest Corn Stover and MSW Blend

• MSW/CS blends have the great potential to meet the cost target.

IL Acidolysis of MSW/CS blends at 30 mL

- The highest glucose (80.6%) and xylose (90.8%) yields are obtained after pretreatment of MSW at 140 °C for 2 h.
- MSW/CS blends generate higher sugar yields than CS at milder conditions.
- Similar results were found for both 1-ethyl-3-methylimidazolium chloride and1-butyl-3-methylimidazolium chloride

MSW Biomass Blends Conversion Scale-up at ABPDU

3 x 10L Parr Reactors and **210L Andritz Reactor**

Energy Efficiency &

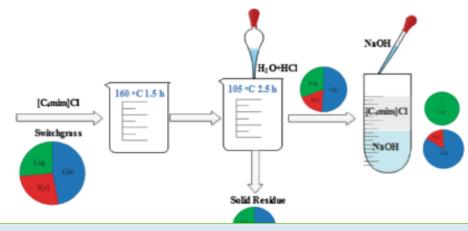
4 x 2L and 1 x 50L IKA Reactor

Background: IL Acidolysis for Biomass Deconstruction

Hemio

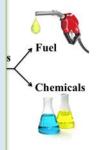
Lign

.....


BERKELEY LAE

U.S. DEPARTMENT OF

Energy Efficiency &


Renewable Energy

- Reactor material compatibility with IL and acid
- Mixing at high solid loadings
- Acid/water injection at high temperature
- Safety of reactor operation and material handling

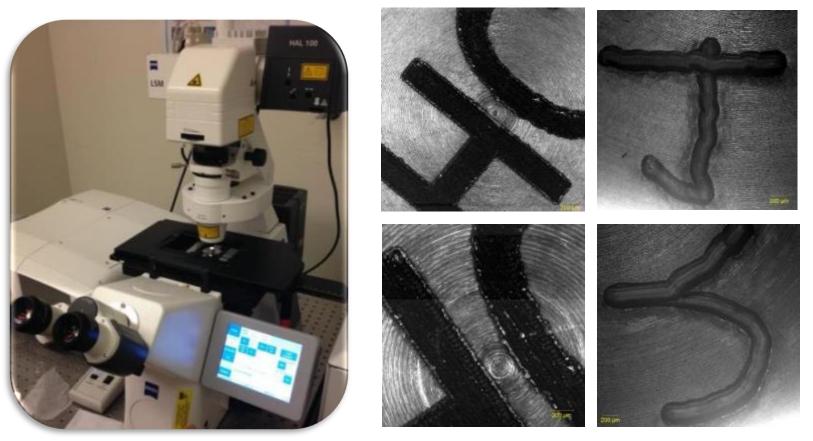
Sun et al., 2013, Biotechnology for Biofuels, 6:39

Coupon Testing for Material Compatibility

Hastelloy C276 Coupons, IL Pretreatment @160°C & 3h, Acidolysis @ 105°C & 3 h, Incubation @ 25°C overnight

1-ethyl-3-methylimidazolium chloride 1-butyl-3-methylimidazolium chloride

6 cycles, 24 hours / cycle


U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Imaging – Surface Changes

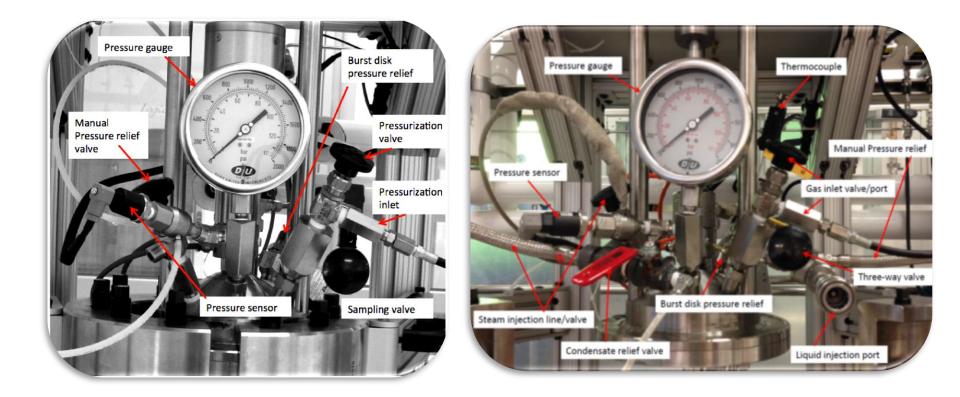
Very minor surface corrosion was observed.

U.S. DEPARTMENT OF

Energy Efficiency &

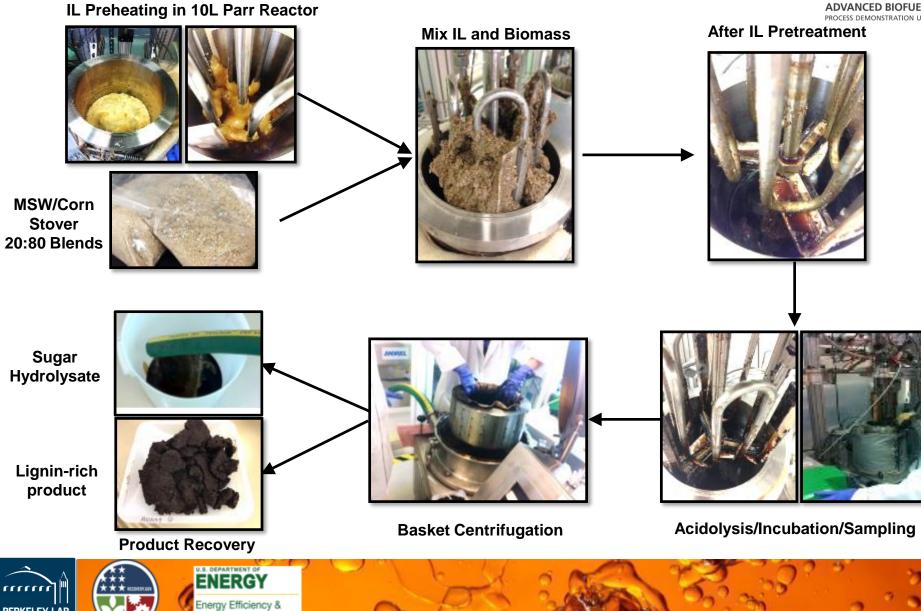
Renewable Energy

Modification of Impeller for High Solids

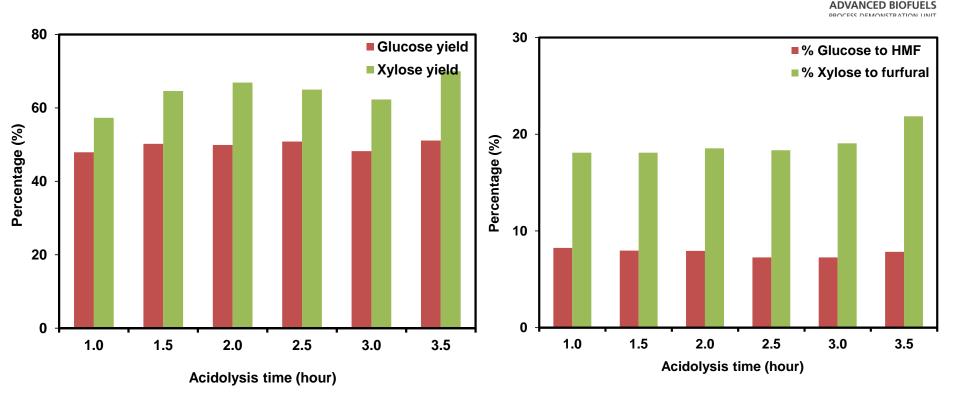


Magnetic drive Self-sealing packed gland drive Anchor impeller

Customization for Acid/Water Injection

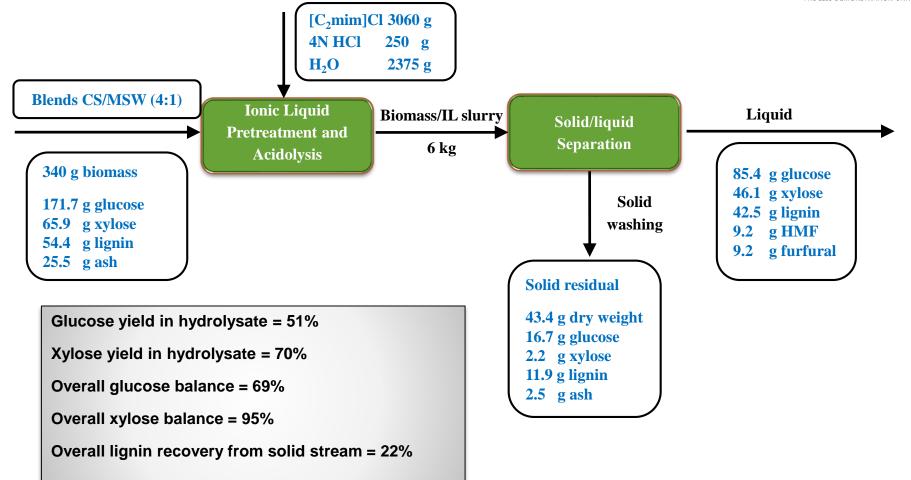


IL Acidolysis Scale-up Process Flow


Renewable Energy

BERKELEY LAB

Acidolysis with [C₂mim]Cl Pretreatment at 6L



- High xylose (70%) and glucose (51%) release was obtained for [C₂mim]Cl pretreatment @140 °C, 2h, 10% TS.
- Up to 8% of glucose was converted to HMF and 22% of xylose was converted to furfural after acidolysis.

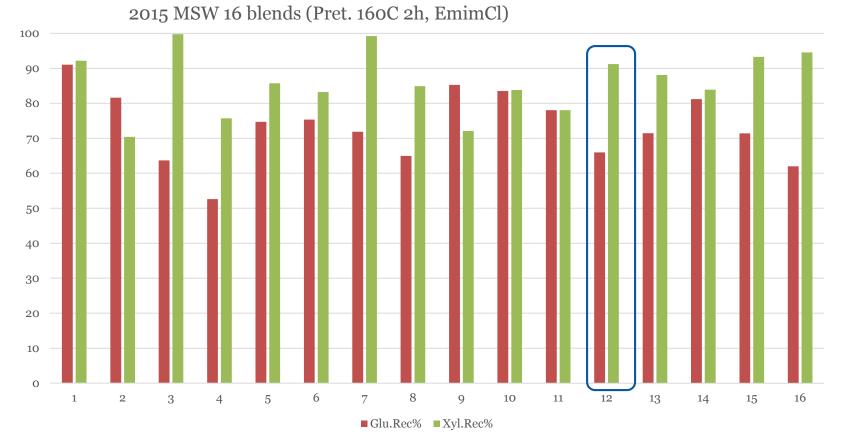
Mass Balance

Blends Screening FY15

					()
New blends 2015 (%)					E
No.	Corn stover	Switchgrass	Grass clippings	MSW	Abbr.
1	90		10		CG9:1
2	80		20		CG8:2
3	70		30		CG7:3
4	60		40		CG6:4
5		90	10		SG9:1
6		80	20		SG8:2
7		70	30		SG7:3
8		60	40		SG6:4
9	90	10			CS9:1
10	80	20			CS8:2
11	90			10	CM9:1
12	80			20	CM8:2
13	70			30	CM7:3
14		90		10	SM9:1
15		80		20	SM8:2
16		70		30	SM7:3

DU

AB


MSW: The non-recyclable paper consisted of aseptic and polycoat containers and packaging, food soiled paper, shredded paper and waxed or coated papers and cardboard.

Small Scale Results Using Tube Reactor

65% glucose, 91 % xylose yield

ERRELEY LABE
Image: Comparison of the comparison of th

Sugar Yield Summary

U.S. DEPARTMENT OF

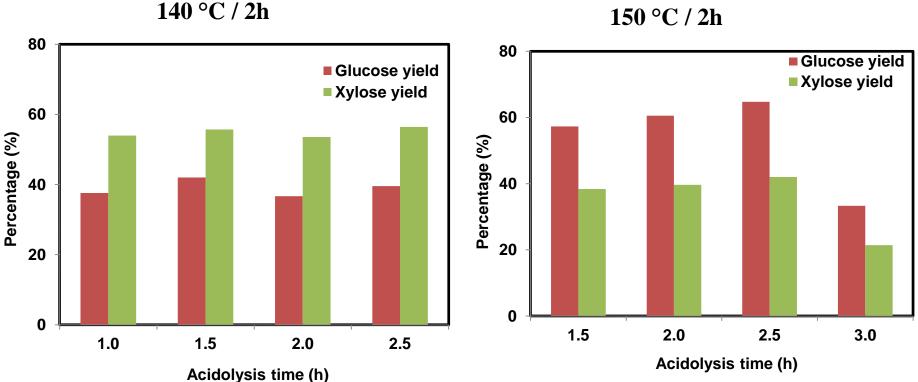
Energy Efficiency &

Renewable Energy

Run	Biomass	5 Ionic liquids S	Solid Loadings	T (°C)/t (h)	Glucose Yield (%)	Xylose Yield (%)	Solid Recovery (%)
1		[C ₄ C ₁ mim]Cl	10	140/2	56.2	84.3	13.2
2		[C ₄ C ₁ mim]Cl	10	160/2	29.0	50.0	4.5
3		[C ₂ C ₁ mim]Cl	10	140/2	49.7	70.0	12.8
4	А	[C ₂ C ₁ mim]Cl	15	140/2	38.2	55.4	34.8
5		[C ₄ C ₁ mim]Cl	15	160/2	46.1	52.1	N/A
6		[C ₂ C ₁ mim]Cl	15	160/2	32.8	40.7	N/A
7		[C ₄ C ₁ mim]Cl	10	140/2	36.7	76.0	N/A
8		[C ₄ C ₁ mim]Cl	10	140/2	38.2	50.7	16.9
9		[C ₄ C ₁ mim]Cl	10	150/2	58.9	38.2	5.9
10		[C ₄ C ₁ mim]Cl	10	160/2	70.9	53.1	0.4
11	В	[C ₄ C ₁ mim]Cl	15	160/2	63.3	41.0	2.8
12	<u></u>	[C ₄ C ₁ mim]Cl	10	120/2	53.7	51.0	13.6
13		[C ₂ C ₁ mim]Cl	10	120/2	44.5	46.9	21.3
14		[C ₂ C ₁ mim]Cl	10	140/2	53.6	35.2	11.7
15		[C ₂ C ₁ mim]Cl	10	160/2	NA	NA	6.8

Composition of the Raw and Recovered Solids

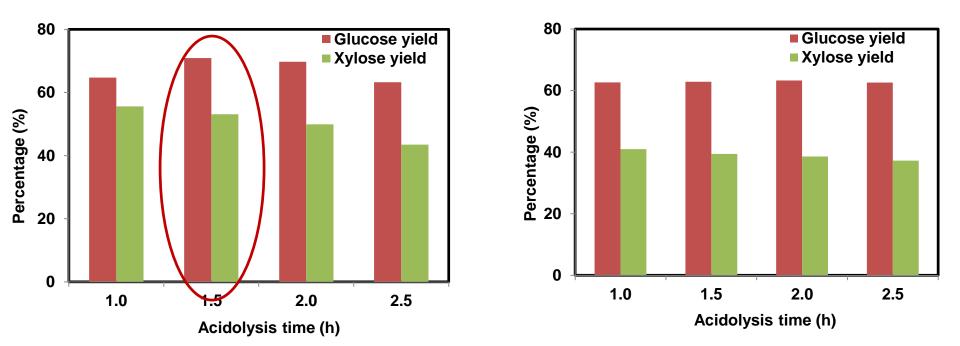
UNIT


Sample	Glucan (%)	Xylan (%)	Klason Lignin (%)	Acid soluble lignin (%)	Ash (%)	Total (%)
Raw MSW	43.85	24.16	17.11	0.32	3.42	88.87
MSW 08	44.20	2.33	41.94	0.32	8.71	97.50
MSW 09	34.94	1.30	37.72	0.66	22.74	97.35
MSW 10	4.84	0.71	49.06	0.45	42.39	97.44
MSW 11	4.81	0.00	38.39	0.33	41.75	85.29
MSW 12	59.00	0.91	19.77	0.53	13.83	94.05
MSW13	38.31	0.00	45.39	0.82	8.82	93.34
MSW14	14.86	0.00	66.41	0.00	11.44	92.70
MSW 15	34.72	17.60	22.14	1.77	2.04	80.86

• Recovered solids are rich in lignin and ash

Sugar Yields with Different Pretreatment Temperatures

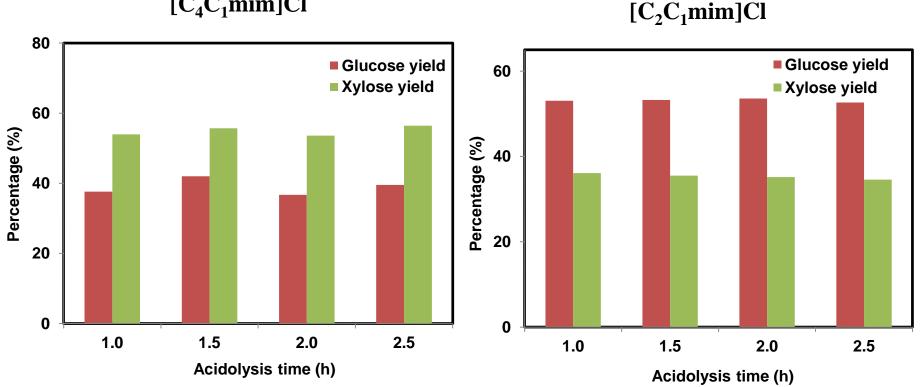
• With increased temperature, higher glucose yields and lower xylose yields were obtained after acidolysis indicating xylose degradation



Sugar Yields with Different Solid Loadings

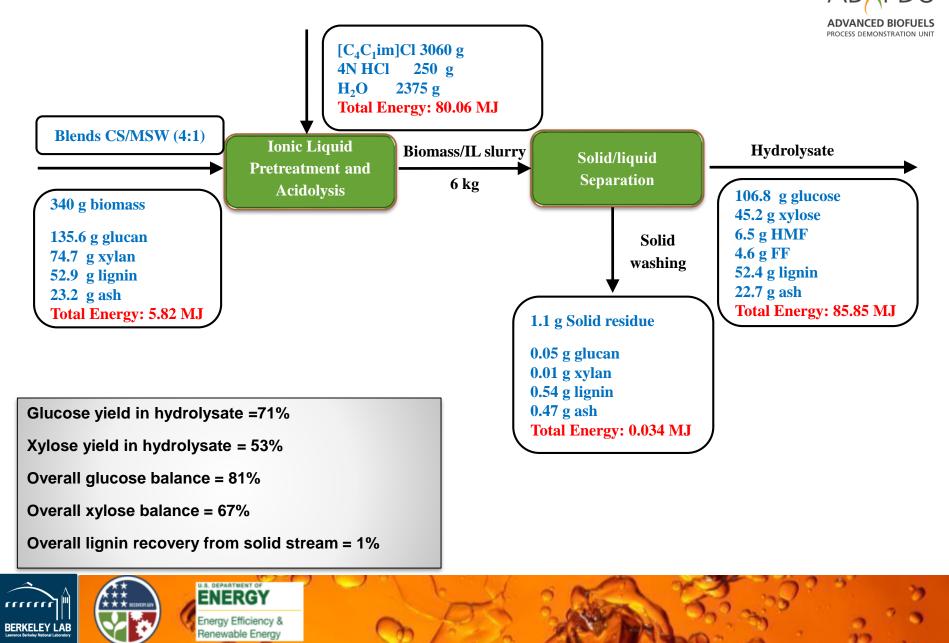
160 °C / 10% solid

160 °C / 15% Solid

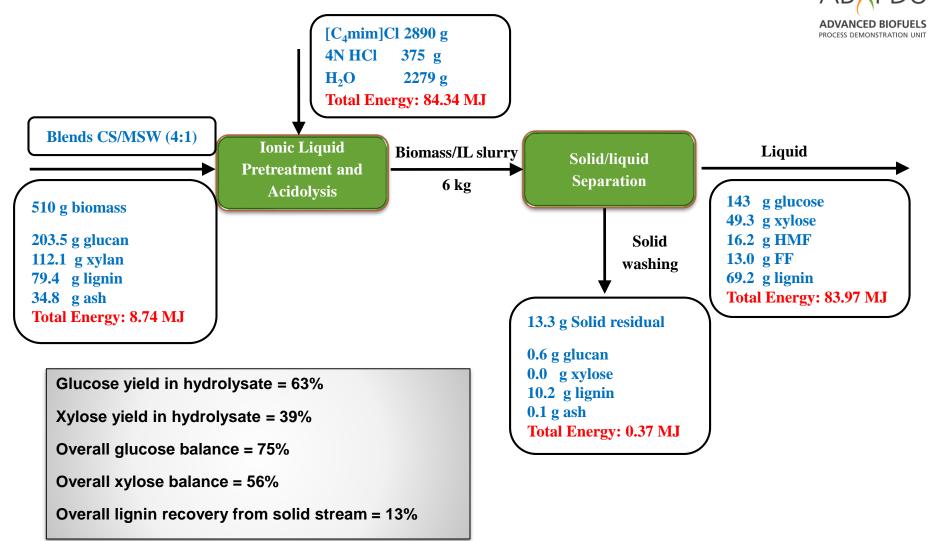


- After PT at 160 °C/2 h, 15% solid loading gives comparable glucose yields to 10%
- Maximum 71% glucose was obtained which is the highest glucose yield obtained in 10 L scale

Sugar Yields with Different ILs



[C₄C₁mim]Cl


After PT at 140 °C/2 h, $[C_2C_1mim]Cl$ results in higher glucose yield compared to $[C_4C_1mim]Cl$ •

Run 10 Mass and Energy Balance

Run 11 Mass Balance

Summary - Key Findings

- Developed an integrated process for IL based deconstruction technologies.
- Successfully demonstrated 200-fold scale up of MSW/CS blends IL acidolysis.
- Optimized conditions in tube reactor at SNL cannot be applied directly to the 10 L Parr vessels due to the different reactor configurations.
- The scale up attempt and process integration will leverage the opportunity towards a cost-effective sugar/lignin production technology.

