

Advanced Biofuels (and Bio-products) Process Demonstration Unit

with:

FATER BIO World Congress on Industrial Biotechnology July 22, 2015

Todd Pray, Chenlin Li, Ling Liang, Jessica Wong, Qian He, Firehiwot Tachea, Ning Sun, Deepti Tanjore

Marcello Somma, Nicola D'Alessio

The FATER – ABPDU partnership

Berkeley Lab's ABPDU has been developing and validating an integrated wasteto-energy process under a DOE work-for-others (WFO) agreement with FATER, an Italian JV between Procter & Gamble and the Angelini Industrial Group.

Key outcomes indicate that post-consumer absorbent hygiene products (AHP) can be readily and economically converted -- without using harsh or expensive pretreatment routes -- to fermentable sugar intermediates as well as biofuel and bio-based chemical products.

FATER Corporate Summary

Founded in 1958 by Angelini Since 1992, a joint-venture of Procter & Gamble and Angelini

Italian market leader for Hygiene products:

- CEEMEA market key player for hard surface cleaning:
- 1,110 employees
- 1,000 related employees
- Turnover: €1,150 million
- 4,563,900,882 product units sold per year
- 3.5 mil € per year in consumer research
- 4 facilities:
 - Pescara (Italy)
 - Campochiaro (Italy) •
 - Porto (Portugal) •
 - Mohammidia (Morocco) •

FRG

Key FATER products and EU recycling issues

"In 2010, total waste production in the EU amounted to 2.5 billion tons. From this total only a limited (albeit increasing) share (36%) was recycled, with the rest was landfilled or burned, of which some 600 million tons could be recycled or reused."

The <u>7th Environment Action Programme</u> sets the following priority objectives for waste policy in the EU:

- To reduce the amount of waste generated;
- To maximize recycling and re-use;
- To limit incineration to non-recyclable materials;
- To phase out landfilling to non-recyclable and non-recoverable waste;
- To ensure full implementation of the waste policy targets in all Member States.

A significant volume and product development opportunity...

ABPDU's Mission

- Established by American Recovery and Reinvestment Act funds in 2009 roughly \$17 million invested in the 15,000 square foot bench-to-pilot demonstration Lab
- Managed by US DOE's Bioenergy Technologies Office / EERE

ABPDU technical capabilities

 Process demonstration, integration and techno-economic analysis across varied bio-process configurations, feedstocks and products

• Can focus on individual unit operations or several processes in succession

Facility at a glance – from lab-to-pilot scale

mm

BERKELEY LAB

Process development and TEA framework

Lab-scale hydrolysis process optimization

Bench-scale enzymatic saccharification

Efficient mixing key to reproducible, scalable hydrolysis of mock and actual AHP materials

Optimized hydrolysis performance at bench scale

Bench-scale fermentation validation

Mock & post-consumer AHP material performance

Potential commercialization routes

• Pretreated sugar intermediate

Renewable Energ

- Distributed, relatively small scale production of enzyme-compatible cellulose-rich material (sugar intermediate) for integration with cellulosic ethanol or chemical producers
- Sugar product
 - Production of sugar monomers and packaging / distribution to users in traditional first-gen starch- and sugar-based fermentation manufacturers

Thank You

Contact info

Todd Pray – <u>tpray@lbl.gov</u> Nicola D'Alessio - <u>dalessio.n@fatergroup.com</u>