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� Feedstock blending can enable
nationwide production of biofuels.

� Predictive model can identify ideal
blend ratios to achieve high sugar
yields.

� A low ratio of high-quality feedstock
can substantially improve sugar
yields.
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Commercial-scale bio-refineries are designed to process 2000 tons/day of single lignocellulosic biomass.
Several geographical areas in the United States generate diverse feedstocks that, when combined, can be
substantial for bio-based manufacturing. Blending multiple feedstocks is a strategy being investigated to
expand bio-based manufacturing outside Corn Belt. In this study, we developed a model to predict con-
tinuous envelopes of biomass blends that are optimal for a given pretreatment condition to achieve a pre-
determined sugar yield or vice versa. For example, our model predicted more than 60% glucose yield can
be achieved by treating an equal part blend of energy cane, corn stover, and switchgrass with alkali pre-
treatment at 120 �C for 14.8 h. By using ionic liquid to pretreat an equal part blend of the biomass feed-
stocks at 160 �C for 2.2 h, we achieved 87.6% glucose yield. Such a predictive model can potentially
overcome dependence on a single feedstock.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Petroleum industry has long been utilizing the power of statis-
tical modeling to rapidly adapt process conditions per composi-
tional variability of incoming crude oil feedstocks and
manufacture a variety of products. Feedstock composition of each
batch of crude oil shipped to a refinery can vary considerably
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and this variation becomes pronounced because a commercial-
scale petroleum refinery processes crude oil in quantities exceed-
ing 100,000 barrels per day (EIA, 2016). This variability can make
any attempts at pre-determining optimal process conditions futile.
Petroleum refineries utilize non-linear modeling to tune process
conditions and fully convert each batch of crude oil but, in conse-
quence, vary the yields of individual products existing in their pre-
established suite (Hsu and Robinson, 2007; Hu et al., 2002). Com-
plete conversion of feedstock has a higher impact on process eco-
nomics than variability in quantities of products manufactured by
a refinery. Furthermore, a refinery’s ability to adapt to feedstock
variability mitigates risks associated with dedicated feedstock sup-
ply chains.

The ability to efficiently and economically utilize variable and
multiple biomass feedstock streams comprising of agricultural
residue, energy crops, and municipal solid waste is critical to grow-
ing the biofuel/ biochemical sectors to the billion-ton scale, beyond
the pioneer bio-refinery plants with dedicated biomass feedstocks
(Langholtz et al., 2016). This is especially true given the 1) impact
of annual and geographic variation on biomass yields and types
(Emerson et al., 2014) and 2) process changes, relative to cellulosic
ethanol, needed to deploy a slate of products, including hydrocar-
bons and lignin-derived compounds (Langholtz et al., 2016). Inte-
grating biomass such as energy crops into existing crop rotations
and blending these feedstocks with existing wastes and residues
available to a bio-refinery will de-risk the logistics of biomass sup-
ply (Lamers et al., 2015; Langholtz et al., 2016; Li et al., 2016; Ray
et al., 2017; Williams et al., 2016). In contrast to this approach, pio-
neer bio-refineries in Iowa, Kansas, etc. have been optimized to
process a single feedstock such as the agricultural residue, corn
stover (Evans, 2014). Even at these pioneer sites, to hedge
supply-side risks and enable farmer choice in which crops to grow
in a given season, it is likely that commercial biofuel producers will
need to diversify feedstock inputs.

Idaho National Laboratory (INL) is currently developing a
method to blend high-quality feedstocks with low-quality ones
to reduce supply-side risks at commercial-scale biorefineries.
High-quality feedstocks are defined as those that deconstruct and
convert readily to biofuels. Least Cost Formulation (LCF) is being
developed to evaluate low-cost biomass feedstocks across the Uni-
ted States and identify geographical locations for bio-refineries
that can integrate diverse biomass feedstocks from multiple
sources into their supply chain and lower overall feedstock costs
(Sun et al., 2015). While such integration is theoretically possible,
it is vital to ascertain that blending feedstocks does not negatively
impact biomass conversion performance, and thereby product
yields. Our understanding of biomass deconstruction, a process
central to bio-refining process chain, has proliferated over the past
century, but most of these studies were conducted on a single bio-
mass feedstock (Dreyfus, 1936; Elander et al., 2009; Faith, 1945;
Lloyd and Wyman, 2005; Wyman et al., 2005a,b). Very little
research has been conducted on breaking down biomass blends
with traditional acidic and basic catalysts (Brodeur-Campbell
et al., 2012; Ewanick and Bura, 2011; Vera et al., 2015). Recent
studies have shown that some novel catalysts, specifically ionic liq-
uids (ILs), have the potential of breaking down biomass blends
with minimal loss of performance in terms of sugar yields (Li
et al., 2017; Shi et al., 2013). Bio-refineries, whether applying tra-
ditional or novel deconstruction catalysts, will have to be equipped
with the ability to tune deconstruction processes per compositions
of biomass blends and completely convert them to valuable inter-
mediates and products. Blending feedstocks and tuning decon-
struction process per the composition of biomass blends will be
vital in attaining the goal of de-risking bio-refining.

Advanced Biofuels Process Demonstration Unit (ABPDU) at the
Lawrence Berkeley National Laboratory (LBNL) collaborated with
INL and Sandia National Laboratory (SNL) to embark upon a
multi-year project to strengthen the emerging feedstock conver-
sion interface and improve economics of deconstruction of bio-
mass blends and their conversion to bio-products. The goals of
this study were to (i) use the LCF model to select three diverse
types of biomass feedstocks available in a geographic region and
(ii) build a robust predictive model to maximize sugar yields by
identifying optimal deconstruction process conditions for a given
biomass blend or vice versa. Other forms of renewable energy pro-
ducing systems, including solar and wind, have long been develop-
ing and applying predictive models to accept varied levels of feed
input (Al-Amoudi and Zhang, 2000; Chow and Leung, 1996;
Hatziargyriou et al., 1993; Landberg, 1999). Developing a predic-
tive model on biomass deconstruction and integrating it to the
established LCF model allows for a robust and sustainable platform
for commercial-scale bio-based manufacturing.
2. Materials and methods

2.1. Biomass feedstocks and compositional analyses

LCF, a modeling system based on data from three different
sources: Billion Ton Update, Biomass Logistics Model, and Bioen-
ergy Feedstock Library, was used to select feedstocks for this study;
see Section 3.1 for further details. The LCF software, developed in
AnyLogicTM, accesses the grower payment/access costs, logistics
costs, and feedstock quality characteristics respectively, from each
of the sources and identifies the locations that are conducive to
establishing a commercial bio-refinery (Sun et al., 2015). The feed-
stocks chosen for this study included: Energy Cane (EC), Switch-
grass (SG), and Corn Stover (CS) and were provided by Idaho
National Laboratory located in Idaho Falls, Idaho. CS and SG were
harvested from Palo Alto, IA and Texas County, OK in October
2011 and October 2010, respectively. EC was harvested from
Oktibbeha County in Mississippi and provided by Mississippi State
University in 2012. The feedstocks were processed at INL’s Feed-
stock Process Demonstration Unit as part of DOE’s Biomass Feed-
stock National User Facility in Idaho Falls, ID. The feedstocks
were stored in plastic drums in a cold room at 4 �C and brought
to room temperature (�25 �C) four hours prior to further size
reduction with a Model No. 4 Thomas Wiley Mill. The milled feed-
stocks were sieved to isolate biomass particles between 20 and 80
meshes (0.85 mm and 0.18 mm, respectively) using a sieve shaker
(Vibratory Sieve Shaker AS 200, Retsch, Newtown, PA, USA). The
20–80 mesh feedstocks were washed with hot water (80 �C) to
remove free sugars and completely dried in an oven at 45 �C prior
to compositional analysis. Whereas, the compositional analyses of
individual biomass feedstocks were determined using a NREL lab-
oratory analytical protocol (see Table 1), the composition of feed-
stock blends were calculated based on the weighted averages of
each of the feedstocks (Hames et al., 2008; Sluiter et al., 2008a,
b). The moisture content (%) of each feedstock was determined
by heating them individually to 105 �C in moisture content ana-
lyzer (Mettler Toledo, Model HB43-S Halogen) until a steady state
mass was achieved. The loss of weight was attributed to moisture
content and was calculated to be 12.4%, 9.1%, and 14.3% for EC, SG,
and CS, respectively. Moisture contents of blends were also mea-
sured to confirm that they are consistent with the calculated
weighted averages of the moisture content acquired from individ-
ual feedstocks, per their mass ratios in the blends.
2.2. Pretreatments

Deconstruction of biomass was conducted in a two stage pro-
cess: chemical pretreatment followed by enzymatic hydrolysis.



Table 1
Feedstock composition before pretreatment.

Feedstocka Glucan (%) Xylan (%) Lignin (%)

Energy cane 34.64 23.65 29.13
Switchgrass 35.40 23.98 23.24
Corn Stover 33.86 15.00 24.96

a Values represent the average of each component based on dry feedstock.
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Three different pretreatment catalysts: dilute acid, dilute alkali,
and ILs were used in the form of 1% (w/w) sodium hydroxide in
water (Sigma Aldrich, St. Louis, MO), 1% (w/w) sulfuric acid in
water (Sigma Aldrich, St. Louis, MO), and 1-ethyl-3-
methyimadozolium acetate with more than 99% purity ([C2mim]
[OAc]) (BASF, Ludwigshafen, Germany), respectively. Feedstocks
and their blends were not washed prior to pretreatment experi-
ments. In the case of dilute alkali and acid pretreatments, 1.0 g
(dry weight) of biomass blends were fed to tube reactors (0.7500

diameter, 0.06500 thickness, 5.900 length) followed by aqueous sulfu-
ric acid (1% w/v) or sodium hydroxide (1% w/v) to reach a total
weight of 10 g. The tube reactors were made of stainless steel
(SS316L) and procured from Alloy Metal & Tubes (Houston, TX).
The slurries were then thoroughly mixed in the tube reactors prior
to overnight soaking. In the case of IL, about 30 min prior to pre-
treatment, biomass blends were mixed with the catalyst in glass
tubes at the same solids loading of 10% (g dry untreated bio-
mass/g slurry).

The tube reactors in dilute acid and alkali pretreatments were
sealed with 316 Stainless steel Swagelok caps (Fremont, CA) with
maximum allowable working pressure of 3300 psi. Sealed tube
reactors were placed in a porous metal basket and lowered into a
fluidized sand bath (Omega Engineering, Stamford, CT) maintained
at the predetermined reaction temperature (Lloyd and Wyman,
2003, 2005). The temperature of the tube reactors were monitored
using a data logging hand held thermometers (Mc Master-Carr, CA)
welded to a single tube reactor filled with 10 g of deionized water.
A stopwatch was used to measure the time taken to heat the
welded tube reactor to the predetermined reaction temperature
(±2.5 �C) and another stopwatch to measure the duration of reac-
tion time, which varied per the treatments in experimental design.
Upon achieving the reaction time, the tube reactor assigned to the
particular treatment was pulled out of the sand bath and plunged
into an ice bath for rapid cooling to <80 �C in less than 5 min. All
tube reactors were then stored at 4 �C overnight, prior to enzy-
matic hydrolysis. To maintain consistency across all pretreatments,
we stored the tube reactors after pretreatment for about 12 h in
the refrigerators. Post refrigeration, the entire contents of the tube
reactors were transferred to a 50 ml Erlenmeyer flask. To recover
all the insolubles of the slurry, the tubes were washed with a total
volume of 7.5 ml sodium citrate buffer (0.1 M). In case of some
alkali pretreatments, the reaction temperatures were lower than
100 �C and reaction times longer than 12 h. In such cases, the tube
reactors were placed in a convection oven (Binder, Bohemia, NY)
for the duration of experiments followed by rapid cooling, storage,
and recovery.

IL pretreatments were conducted in 15 ml glass pressure tubes
(Ace Glass Inc, Vineland, NJ, USA) that were heated in an oil bath (Li
et al., 2011, 2010). Since IL pretreatments are conducted at atmo-
spheric pressures, ace thread and back seal caps were sufficient
to seal them. Throughout the IL pretreatment, slurries were agi-
tated using a micro-stir bar and a magnetic stirring plate. Once
the reaction time was achieved, glass tubes were removed from
the oil bath and pretreated slurries were then transferred to cen-
trifuge tubes (50 ml). Washing of IL pretreated slurries was con-
ducted in centrifuge tubes by adding 30 ml hot deionized water
(�70 �C) and vigorously shaking the slurry for 15 min. The super-
natant was decanted and the washing process was repeated five
times in order to remove residual IL from pretreated biomass.
The pretreated solids were stored in a refrigerator, prior to enzy-
matic hydrolysis.

2.3. Enzymatic saccharification and HPLC analysis

Enzymatic hydrolysis was conducted at 4% (w/w) solid loading
with Ctec2� and Htec2� (Novozymes, Davis, CA) enzyme loading at
10 or 40 and 1 or 4 mg protein/g glucan in untreated feedstock
blends, respectively. The protein concentrations of the two
enzymes, CTec2 and HTec2, as determined by the Bradford assay
(Bio-Rad, Hercules, CA) with bovine serum albumin standard, were
190 and 174 mg/ml, respectively. It is important to reiterate that
we did not separate pretreated solids from the liquor. We per-
formed enzymatic hydrolysis on the entire slurry, as it is more rel-
evant to a commercially-viable, process intensified technologies
(Krishna et al., 1999, 1998; Vincent et al., 2014). Prior to enzyme
application, 2% (w/w) sodium azide (0.2 ml) was added to all slur-
ries and pH adjusted to 5.5 with either sulfuric acid (72.0%, Sigma-
Aldrich, St. Louis, MO) or sodium hydroxide (50%, Sigma-Aldrich,
St. Louis, MO). As explained in Section 2.2, 0.1 M sodium citrate
buffer (7.5 ml) was added to the tube reactors when recovering
dilute acid and alkali pretreated solids. The buffer was added sep-
arately, prior to enzyme addition, when hydrolyzing IL pretreated
feedstocks. Deionized water was then added directly to all slurries
to obtain a total weight of 25 ml in 50 ml Erlenmeyer shake flasks.
All flasks were maintained at 50 �C in a shaking incubator (Max Q
8000, Thermo Scientific, Waltham, MA) for 120 h and samples
were taken periodically at time intervals of 1, 12, 24, 72, and
120 h. These samples were centrifuged at 18,000 RCF for 30 min
in a vial with a 0.2 lm filter and stored in a �20 �C freezer prior
to HPLC analysis.

Dionex HPLC (Thermo Scientific, Waltham, MA) with an Aminex
HPX-87H� analytical column (7.8 � 300 mm) (Bio-Rad, Hercules,
CA) was used to analyze pretreatment and enzymatic hydrolysis
liquid samples for glucose, xylose, furfural, acetic acid and
5-hydroxymethylfurfural (HMF). The column was maintained at
65 �C while the refractive index detector was maintained at 50 �C.
A 5 mMsulfuric acid eluent was used at a flow rate of 0.6 ml/minute
for this 50-min method. Dionex Chromeleon� software was used to
identify peaks of the analytes and integrate the area under peaks to
calculate concentrations, relative to known standards. Standards
for HPLC, such as glucose, xylose, acetic acid, furfural, and HMF
were purchased from Sigma-Aldrich (St. Louis, MO).

Glucose yield ð%Þ

¼ Measured glucose concentration ðg=LÞ � Total EH volumeð0:025LÞ � 0:9
Total theoretical glucan ðgÞ in initial biomass

� 100

ð1Þ

Xylose yield ð%Þ

¼ Measured xylose concentration ðg=LÞ � Total EH volumeð0:025LÞ � 0:88
Total theoretical xylan ðgÞ in initial biomass

� 100 ð2Þ
3. Results and discussion

3.1. Least cost formulation to identify geographical location for a
bio-refinery

By using LCF, we selected a geographical location to examine a
biomass blend scenario beyond the U.S. Corn Belt and with a recal-
citrant feedstock. Such a case study would fully test not only
prospective geographical sites but also the application of predictive
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model of a bio-refinery in such a site. Fort Myers suburban area of
Lee County in Florida, with access to fresh water from the Caloosa-
hatchee River and proximity to shipping routes and fuel-
consuming urban counties, seemed to be a good fit for this study,
see Fig. 1.

The primary source of biomass in this region is EC, a recalcitrant
feedstock that is available at 1000 US dry tons per year in 2020, but
will grow to 50,000 US dry tons per year in 2030, see Fig. 1(a). A
commercial-scale bio-refinery is expected to process approxi-
mately 2205 dry U.S. tons of biomass feedstock per day, for
330 days a year (Sadhukhan et al., 2014; Tao et al., 2014). About
500,000 US dry tons of SG per year in 2030 can be included in
the feedstock supply chain of a bio-refinery in this region, see
Fig. 1(b). With these two feedstocks combined, a bio-refinery can
be operated for 250 days a year. In this study, we assumed CS to
be a higher quality feedstock and while CS is not available in the
immediate geographical area, see Fig. 1(c), transporting the bio-
mass and including it in the blends is an option. Including CS in
the blends could not only ensure continuous operation of the
bio-refinery throughout the year, but also improve the quality of
biomass blend (Thompson, 2016). Blending high-quality biomass
has to be implemented to the extent that the overall yields of
Fig. 1. Expected availability of (a) energy cane, (b) switchgrass, and (c
intermediates and products reach desirable levels. From a logistics
point of view, a bio-refinery in Lee County will need up to 540 dry
tons of CS per day, which can be provided by nearby counties in the
state of Georgia (Searcy et al., 2007). If blending high-quality bio-
mass can help improve overall conversion yields, farmers and local
government will be incentivized to grow corn crops in Lee country
itself.

From a feedstock quality point of view, to determine the mini-
mum concentration of high-quality feedstock required in a bio-
mass blend, it is essential to test and study yield changes that
occur when feedstock ratios are varied. Statistical design of exper-
iments and analysis become vital in predicting this effect of blend-
ing biomass feedstocks. In this study, we designed and developed a
predictive model to identify either the optimal blend ratios within
LCF limits, deconstruction conditions, or both to maintain desirable
product yields in a bio-refinery in the Lee County.

3.2. Design of experiments and predictive model development

A response variable that will be most representative of the vari-
ability in biomass blends was necessary for initiating the experi-
mental design. We selected glucose yield (percentage of
) corn stover in the south-eastern United States in the year 2030.
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theoretical maximum) after deconstruction as the response vari-
able in this study to avoid potential inconsistencies that stem from
including product yields of downstream processes. Xylose yields
and furfural concentrations were also monitored. Literature indi-
cates that glucose yield is highly susceptible to changes in decon-
struction process conditions, i.e., chemical pretreatment and
enzymatic hydrolysis treatment conditions. To limit the number
Fig. 2. Glucose yields (% of theoretical) observed in 24 treatments with varying
ratios of energy cane, switchgrass, and corn stover in feedstocks tested with dilute
acid, dilute alkali, and ionic liquid catalysts at varying pretreatment reaction
temperatures and times. (a) Enzymatic hydrolysis was conducted with CTec2� and
HTec2� at a loading of 40 and 4 mg protein/g glucan in untreated biomass. (b)
Enzymatic hydrolysis was conducted with CTec2� and HTec2� at a loading of 10
and 1 mg protein/g glucan in untreated biomass. Data interpretation with bar chart
is limiting.

Table 2
Experimental conditions and glucose yield (% of theoretical) in reproducibility study testi

Treatment number Block # Pretreatment Feedstock

Energy cane Switch g

1 1 Dilute acid 0.3 0.4
2 1 Dilute acid 0.4 0.4
3 1 Dilute acid 0.2 0.2
4 2 Dilute alkali 0.3 0.4
5 2 Dilute alkali 0.4 0.4
6 2 Dilute alkali 0.2 0.2
7 3 Ionic liquid 0.3 0.4
8 3 Ionic liquid 0.4 0.4
9 3 Ionic liquid 0.2 0.2

Notes: Pretreatment and enzymatic hydrolysis were performed at solids loading of 10% an
1 mg protein/g glucan of CTec2 and HTec2, respectively, in untreated biomass was appl

* Percentage of theoretical maximum as observed in hydrolysate after pretreatment a
of variables in our design, we assumed that enzymatic hydrolysis
process has a lower impact than pretreatment variables on glucose
yields and performed only a single level of enzymatic treatment,
uniformly across all experimental studies. We confirmed the same
by conducting a separate pilot study on 24 blends with a higher
enzyme loading, see Fig. 2(a) and (b). The average of differences
in glucose yields for the 24 blends was less than 10%. In summary,
we incorporated (i) blending ratios of the three feedstocks, (ii) pre-
treatment catalysts, (iii) pretreatment reaction temperatures, and
(iv) pretreatment reaction times as key factors of interest and stud-
ied their impact on our response variable, glucose yield.

Prior to designing experiments, we performed tests to ascertain
the reproducibility of pretreatment and enzymatic hydrolysis stud-
ies by conducting triplicate experiments, as given in Table 2. Glu-
cose yield (% of the theoretical) along with standard deviation
from these replication studies are also presented in the table. The
yield averages were used to baseline the predictions from our
model. Most treatments exhibited variability around 5% (of theo-
retical) in glucose yield, with dilute acid treatments leading to least
variability, <2%. It is important to note that this variability repre-
sents the error associated with both experimental work and ana-
lytical measurements of glucose concentrations.

Experimental design was developed using SAS JMP� (Cary, NC)
with a mixed model approach, emphasizing on individual differ-
ences that arise from blending the three feedstocks and treating
it as a single difference. Biomass blends were allowed to vary from
singular feedstocks to a variety of ratios of each of the three feed-
stocks. Thereby, for a given treatment, the ratio of EC, SG, or CS in
the biomass blend could be 1:1:1, 5:2:1, or 1:0:0, etc. As for pre-
treatment, except pretreatment catalysts that were identified to
be categorical variables, all others were designated to be scaled
variables. Consequently, as a categorical variable, the design
allowed either dilute acid, dilute alkali, or IL for a particular treat-
ment but not the combination of two or three of them. As a single
categorical variable with three levels of treatment, pretreatment
had two degrees of freedom. Since IL is feedstock agnostic and
has been previously shown to deconstruct feedstock blends effi-
ciently, we considered it to be the control for pretreatment variable
(Li et al., 2013), i.e. model will report the impact of dilute alkali and
dilute acid treatments in comparison with IL pretreatment.

To produce useful effects, after reviewing comprehensive liter-
ature evidence, we identified varying ranges of operational param-
eters for each of the three pretreatment catalysts (Elander et al.,
2009; Li et al., 2011, 2010; Lloyd and Wyman, 2005; Wyman
et al., 2005a,b). By scaling reaction temperatures and times factors
for each pretreatment catalyst, we were able to develop a uniform
experimental design in SAS JMP�, which was translated prior to
experimentation. As such, 1% temperature for alkali pretreatment
ng various biomass blends with three pretreatment catalysts.

ratios Temperature Time Glucose yield*

rass Corn stover % �C % Min Actual

0.3 1 140 45 30 57.30 ± 0.42
0.2 1 140 45 30 54.55 ± 1.48
0.6 1 140 45 30 65.37 ± 1.77
0.3 100 120 1 60 57.77 ± 7.03
0.2 100 120 1 60 56.55 ± 1.00
0.6 100 120 1 60 60.79 ± 8.23
0.3 100 160 1 60 86.94 ± 4.71
0.2 100 160 1 60 67.51 ± 3.66
0.6 100 160 1 60 74.53 ± 5.67

d 4% w/w (untreated dry biomass in slurry), respectively; enzyme loading of 10 and
ied to all pretreated slurries.
nd enzymatic hydrolysis; ƗN.D – Not Detected.
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was 55 �C but for acid pretreatment the same was 140 �C. Given
below is the range for each of the variables.

� Feedstock compositions (scaled): EC (0–100%), SG (0–100%),
and CS (0–100%).

� Pretreatment catalyst (categorical): dilute acid, dilute alkali, or
IL.

� Pretreatment reaction temperatures (scaled): dilute acid
(1–100%) 140–180 �C, dilute alkali (1–100%) 55–120 �C, IL
(1–100%) 120–160 �C.

� Pretreatment reaction times (scaled): dilute acid (1–100%)
5–60 min, dilute alkali (1–100%) 1–24 h, IL (1–100%) 1–3 h.

Per the given ranges, if the experimental design required us to
perform a treatment of 100% EC with IL at 1% temperature and
100% time, we treated 1 g of EC with 9 g IL at 120 �C for 180 min
Table 3
Design of experiment for first 24 conditions with varying factors for each treatment along

Treatment
number

Block # Pretreatment Feedstock ratios

Energy
cane

Switch
grass

Corn
stover

1 1 Ionic liquid 0.0 1.0 0.0
2 1 Dilute acid 0.3 0.4 0.3
3 1 Dilute Alkali 1.0 0.0 0.0
4 1 Dilute Alkali 0.5 0.5 0.0
5 1 Dilute Alkali 0.0 1.0 0.0
6 1 Ionic liquid 1.0 0.0 0.0
7 2 Dilute acid 0.4 0.6 0.0
8 2 Dilute acid 0.0 0.0 1.0
9 2 Dilute Alkali 0.0 1.0 0.0
10 2 Dilute Alkali 0.0 0.0 1.0
11 2 Dilute Alkali 1.0 0.0 0.0
12 2 Ionic liquid 1.0 0.0 0.0
13 3 Ionic liquid 0.0 0.5 0.5
14 3 Dilute acid 1.0 0.0 0.0
15 3 Ionic liquid 0.0 0.0 1.0
16 3 Dilute Alkali 0.3 0.4 0.3
17 3 Dilute acid 0.0 0.6 0.4
18 3 Dilute Alkali 0.0 0.0 1.0
19 4 Dilute acid 0.0 1.0 0.0
20 4 Ionic liquid 0.0 0.0 1.0
21 4 Ionic liquid 0.0 1.0 0.0
22 4 Ionic liquid 0.5 0.0 0.5
23 4 Dilute Alkali 0.4 0.4 0.2
24 4 Dilute acid 1.0 0.0 0.0

Notes: Pretreatment and enzymatic hydrolysis were performed at solids loading of 10% an
1 mg protein/g glucan of CTec2 and HTec2, respectively, in untreated biomass was appl

* Percentage of theoretical maximum as observed in hydrolysate after pretreatment a
Ɨ N.D – Not Detected.

Table 4
ANOVA with parameter estimates for each factor tested to model (a) glucose yields and (

Factor Coefficients S

(a)
Energy cane 62.09
Switchgrass 68.08
Corn stover 73.22
Pretreatment [Alkali] -9.98
Pretreatment [Acid] �5.81
Temperature (1, 100) 3.46
Time (1, 100) 3.03

(b)
Energy cane 0.26
Switchgrass 0.27
Corn stover 0.24
Pretreatment [Alkali] �0.25
Pretreatment [Acid] 0.51
Temperature (1, 100) 0.24
Time (1, 100) 0.18
(Test #6 in Table 3). Similarly, if we were to perform pretreatment
of a biomass blend with 30, 40, and 30% of each of the feedstocks
and treat with dilute alkali at 39% temperature and 1% time, we
blended 0.3, 0.4, 0.3 g of EC, SG, and CS and treated the biomass
blend with 9 g of 1% (w/w) sodium hydroxide at 80 �C for 60 min
(Test #16 in Table 3). Reaction temperature was used as the block-
ing factor, as changing temperature in sand and oil baths during
pretreatment experiments was the most time-consuming task
and avoiding it was prudent.

Whereas the model was developed to serve the purpose of iden-
tifying optimal deconstruction conditions to maximize glucose
yields, to build a robust model, it was imperative that we obtain
glucose yield data representing the entire 0–100% (theoretical
maximum) range. Such data would help avoid distortions in the
model and skewed predictions from it. Accordingly, to obtain low
and high sugar yields, we added a constraint to limit the sum of
with response variables, glucose and xylose yields and furfural concentrations.

Pretreatment
temperature

Pretreatment
time

Sugar yield* Furfural
conc (g/l)

% �C % min Glucose Xylose

1 120 39 106.8 49.20 30.81 N.D.Ɨ

1 140 100 60 54.75 80.04 0.19
1 55 100 1440 56.54 89.47 N.D.Ɨ

1 55 39 589 33.96 42.72 N.D.Ɨ

1 55 100 1440 57.82 55.22 N.D.Ɨ

1 120 100 180 52.33 52.19 N.D.Ɨ

100 180 1 5 27.21 73.18 N.D.Ɨ

100 180 60 38 57.33 5.46 1.69
100 120 1 60 56.78 51.24 N.D.Ɨ

100 120 1 60 74.60 48.31 N.D.Ɨ

100 120 1 60 53.33 0.00 N.D.Ɨ

100 160 1 60 74.07 73.05 N.D.Ɨ

39 135 100 180 47.12 25.71 N.D.Ɨ

39 155 1 5 33.81 83.85 N.D.Ɨ

39 135 1 60 38.98 24.18 N.D.Ɨ

39 80 1 60 48.71 51.77 N.D.Ɨ

39 155 1 5 61.27 77.83 N.D.Ɨ

39 80 100 1440 64.19 39.18 N.D.Ɨ

80 172 80 49 78.30 22.91 1.35
80 152 80 156 93.51 23.23 N.D.Ɨ

80 152 80 156 97.71 24.95 N.D.Ɨ

80 152 1 60 83.63 62.80 N.D.Ɨ

80 107 80 1159 62.68 60.88 N.D.Ɨ

80 172 80 48.8 72.26 36.68 1.6

d 4% w/w (untreated dry biomass in slurry), respectively; Enzyme loading of 10 and
ied to all pretreated slurries.
nd enzymatic hydrolysis.

b) furfural concentrations.

tandard error t-ratio Prob > [t]

3.64 17.02 <0.0001
3.85 17.65 <0.0001
3.79 19.31 <0.0001
2.72 -3.66 0.0005
2.80 �2.08 0.0417
2.56 1.35 0.1827
2.87 1.05 0.2961

0.09 2.89 0.0052
0.10 2.82 0.0064
0.09 2.59 0.0117
0.07 �3.65 0.0005
0.07 7.37 <0.0001
0.06 3.86 0.0003
0.07 2.52 0.0142



682 A. Narani et al. / Bioresource Technology 243 (2017) 676–685
scaled pretreatment reaction time and temperature to less than
160%. When pretreatment reaction temperature was raised to a
100% of the scale, reaction time could not be raised beyond 60%
and vice versa. Similarly, we also set a lower limit of 40% for a dif-
ference between the two scaled parameters, i.e. reaction time was
Fig. 3. Ternary plots indicating an envelope of predicted feedstock blend ratios that can
dilute alkali, (b) 70% (of theoretical) through dilute acid, and (c) 90% (of theoretical) thro
HTec2� loading at 10 and 1 mg protein/g glucan in untreated biomass blends. Envelope
not allowed to be set below 60% when reaction temperature was
set at 100%, etc. These restrictions allowed us to hone the design
to avoid results from several extreme pretreatment condition sce-
narios and potentially provide an entire gamut of glucose yield
numbers.
enable predetermined theoretical glucose yields of (a) 60% (of theoretical) through
ugh ionic liquid pretreatments followed by enzymatic hydrolysis with CTec2� and
is presented as the area enclosed in the green trapezoid in the (a) ternary plot.



Fig. 4. Results from validation experiments; Actual vs. Predicted.
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3.3. Glucose yield data analysis and visualization

To develop a linear mixed effect model with glucose yields,
we performed analysis of the data with Restricted Maximum
Likelihood, or REML, method that was available through SAS
JMP�. REML was selected in place of the traditional Expected
Mean Squares as this method is appropriate with unbalanced
data in our mixed model (e.g., repetition of a particular biomass
blend in the experimental design) (SAS, 2017). Per the model,
reaction temperature and time had no significant impact on
glucose yield, with p-values of 0.31 and 0.25, respectively, as
shown in Table 4(a). This result was unexpected, as previous lit-
erature has shown that both reaction time and temperature sub-
stantially impact glucose yields (Lloyd and Wyman, 2003, 2005).
However, we chose a range of reaction temperatures and times
that have previously shown to impact the glucose yields and
further constrained the upper and lower limits of the sum of
scaled pretreatment times and temperatures to 160 and 40%.
As such, within this optimized range of combinations of
reactions temperature and times, it is possible that these param-
eters did not have a statistically significant impact. The ratios of
the three feedstocks had a significant impact on glucose yields
(p-value < 0.0001). Alkali and acid pretreatments had lower level
impacts on glucose yields (p-values at 0.0005 and 0.0417,
respectively) but were statistically significant, when analyzed
against IL pretreatment.

The p-value from lack of fit tests for glucose and furfural
were 0.68 and 0.70, indicating that there is no evidence of the
model not fitting the data well. From these results, we can con-
clude that glucose yield was most dependent on feedstock ratios
over all other factors tested and alkali pretreatment was able to
generate most impact on glucose yield. Washing of IL pretreated
solids prior to enzymatic hydrolysis removed much of the hydro-
lyzed xylan in the washes. As such, we replaced xylose yields
with furfural concentration in the model, as the lack of furfural
is a good indicator of the quality of sugars for downstream
fermentation. Interestingly, all factors tested in this study had
a significant effect on furfural concentrations, but as expected
acid pretreatment and reaction temperature had the most
impact, see Table 4(b).

Researchers often use a bar or line chart to present glucose
yield data (Elander et al., 2009; Li et al., 2011, 2010; Lloyd and
Wyman, 2005; Wyman et al., 2005a,b). However, due to the six
factors that include three feedstocks and three deconstruction-
related factors, bar charts were limited in their ability to dis-
play our data, see Fig. 2(a) and (b). While we were able to plot
glucose yield as a function of the three pretreatment catalysts,
the varying feedstock ratios and reaction temperatures and time
were not represented linearly on this chart type. Any further
labeling of individual treatments would only make the graph
more obscure. Furthermore, the average of drop in glucose yield
due to reduced enzyme loading, was at 9.92 ± 21.27%. The very
high standard deviation indicates that the impact of feedstock
blends is much higher than can be explained by averages or
bar charts. As such, we relied on SAS JMP� not only for data
analysis, but also visualization of the results and interaction
with the model. A ternary plot mixture profiler with the three
feedstocks represented by the three corners was used to pre-
sent glucose and furfural predictions. Since the model was also
generated in JMP�, the profiler was able to provide us the
opportunity to interact with the model, i.e., all factors were
provided on a sliding bar allowing the user to vary these factors
and view the changes in predictions in real time, see Fig. 3(a).
Dilute alkali, dilute acid, and IL were presented at levels 0, 1,
and 2 of the pretreatment catalyst factor, even though the
levels themselves do not represent an increase or decrease in
the intensity of pretreatments. The trapezoidal area, given in
green, enclosed by glucose yield and furfural concentration
curves, given in red and blue respectively, represents all blend
ratios that can generate the predetermined glucose yield of
60% (of theoretical) with furfural concentrations at a level lower
than the set level of 0.29 g/L.

To achieve 60% (of theoretical) glucose yield with dilute alkali
pretreatment, we require a CS ratio of at least 0.26 in every
blend; represented as corner A in the green trapezoid in Fig. 3
(a). We can completely avoid SG by switching over to corner
B, but only with at least 0.35 CS in such a blend. Video 1
(https://youtu.be/fhaTfZbCsEM) is a video capture of the interac-
tive JMP visualization tool of our model. We can also eliminate
EC from the blend but with at least 0.42 CS included in the bio-
mass blends; represented as corner D. Corner C is the control
test of singular CS feedstock. Fig. 3(b) depicts the blend envelope
with acid pretreatment and, as expected, the high xylan content
of SG increased furfural concentrations and reduced its prospects
as a blend component. When we switch to IL without changing
any other parameters, as in Fig. 3(c), predetermined glucose
yield can be raised up to 85% (of theoretical). In this system,
we have much larger envelope that will allow switchgrass ratio
as low as 0.04 but only when coupled with at least 0.27 CS ratio.
We can use this tool to change pretreatment reaction tempera-
ture and time and instantly predict the impact of these changes
on feedstock envelopes and glucose yields. The interactive fea-
ture of this visualization is essential in the application of this
model as we anticipate bio-refineries, much like petroleum
refineries, will be required to quickly adapt to feedstock variabil-
ity. The continuous envelopes of feedstock blends generated by
this model for a given situation can help sugar and fuel produc-
ers conveniently and rapidly vary feedstock compositions to
ensure a constant supply of feedstock input or reduce feedstock
costs, while maintaining or improving overall glucose yields.
Since, the model presented in this study is based on blends of
EC, SG, and CS, the predictions are applicable only to the various
blends of these three feedstocks. A separate geographical loca-
tion, with a new set of feedstocks, will require a model to be
generated based on the glucose yields from the deconstruction
studies conducted on a few combinations of those particular
feedstocks.

https://youtu.be/fhaTfZbCsEM


Video 1. JMP Predictive Model Interactive Visualization (https://youtu.be/fhaTfZbCsEM).
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3.4. Predictive model validation

The model presented in this study was validated by performing
13 independent deconstruction tests that were not in repetition to
any of the tests conducted for model development. The correlation
between actual and predicted glucose values, presented in Fig. 4,
established the model and validated the predictions. But this graph
is meaningful if we had only one explanatory variable, unlike our
model where there were multiple variables to consider. Hence,
marginal residuals from the model were used to reflect prediction
error based only on the fit of main effects. Residuals plots, glucose
yield residuals plotted against the predicted glucose yields, were
studied to understand the effect of feedstock ratios and reaction
conditions. Positive values for the residuals (on the y-axis) indicate
that the prediction was too low and vice versa, making zero value
the desirable prediction.

Typically, residual values are expected to be scattered randomly
around zero. In this study, some of the data points were clustered
around the higher and lower values, indicating that the predictions
were not well developed. These data points represented glucose
yields from IL pretreatment. Due to the typically high glucose
yields observed from IL pretreatment, irrespective of choice of
feedstock ratio and reaction temperature and time, the model
was unable to avoid inflating glucose yield predictions from IL.
While IL is an excellent catalyst to breakdown biomass blends,
modeling glucose yields from this pretreatment was challenging.
Glucose yields from dilute acid and alkali pretreatments varied
throughout the range making the predictions for these catalysts
valid.

The predictions from a validated model can be deemed useful
only when applied in a real-world scenario. In a follow up to this
study, we further tested the application of this model by testing
some of its predictions at a higher solid loading of 30% (w/w) dur-
ing pretreatment. We also tested the quality of sugars released
from these higher solids loading deconstruction by fermenting
the hydrolysates to ethanol. The results from the higher solid load-
ing study were applied to a techno-economic analysis model to
further validate the application of predictive modeling for biomass
blending in commercial-scale bio-based manufacturing.

4. Conclusions

Predictive modeling was used to identify optimal biomass
blends that will allow the blending of low-quality, low-price feed-
stock with higher quality ones to not only expand the scope of
establishing a bio-refinery in geographical areas beyond the Corn
Belt but also reduce costs. Through the predictive model, we also
identified optimal deconstruction conditions to produce at least
60% (of theoretical) glucose yields from various blends, by varying
pretreatment catalysts and reaction temperature and time. In a
separate publication, we elucidated the application of model
predictions in commercially relevant studies, such as high-solid

https://youtu.be/fhaTfZbCsEM
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loading deconstruction and fermentation, and techno-economic
analysis.

Acknowledgements

The funding for this work was provided by Department of
Energy’s Energy Efficiency and Renewable Energy division through
BioEnergy Technology Office (BETO). The funding was provided as
an annual operating plan to each of the three national laboratories:
Lawrence Berkeley, Sandia, and Idaho National Laboratories. CL,
AER, and DSH would like to thank the United States Department
of Energy, Assistant Secretary for the Office of Energy Efficiency
and Renewable Energy, Bioenergy Technologies Office for support-
ing INL under DOE Idaho Operations Office Contract DE-AC07-
05ID14157. We would like to thank Mr. Kevin Kenney and Dr. Vicki
Thompson for providing the guidance required in the initial stages
of the project. We would also like to thank Ian Rowe at the Depart-
ment of Energy for his valuable suggestions during the course of
this project.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.biortech.2017.06.
156.

References

Al-Amoudi, A., Zhang, L., 2000. Application of radial basis function networks for
solar-array modelling and maximum power-point prediction. IEE Proc.-Gen.
Trans. Distrib. 147, 310–316.

Brodeur-Campbell, M., Klinger, J., Shonnard, D., 2012. Feedstock mixture effects on
sugar monomer recovery following dilute acid pretreatment and enzymatic
hydrolysis. Bioresour. Technol. 116, 320–326.

Chow, T., Leung, C., 1996. Neural network based short-term load forecasting using
weather compensation. IEEE Trans. Power Syst. 11, 1736–1742.

Dreyfus, H., 1936. Lignocellulosic material. https://www.google.com/patents/
US2047314, 1.

EIA, 2016. U.S. Number and Capacity of Petroleum Refineries, (Ed.) U.E.I.
Administration, vol. 2016. Energy Information Administration. http://www.
eia.gov/dnav/pet/pet_pnp_cap1_dcu_nus_a.htm.

Elander, R., Dale, B., Holtzapple, M., Ladisch, M., Lee, Y.Y., Mitchinson, C., Saddler, J.,
Wyman, C., 2009. Summary of findings from the Biomass Refining Consortium
for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment.
Cellulose 16, 649–659.

Emerson, R., Hoover, A., Ray, A., Lacey, J., Cortez, M., Payne, C., Karlen, D., Birrell, S.,
Laird, D., Kallenbach, R., 2014. Drought effects on composition and yield for corn
stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 5, 275–
291.

Evans, J.H., 2014. Update on Project LIBERTY, the POET-DSM Advanced Biofuels
Cellulosic Ethanol Biorefinery in Emmetsburg Iowa. 36th Symposium on
Biotechnology for Fuels and Chemicals (April 28-May 1, 2014). SIMB.

Ewanick, S., Bura, R., 2011. The effect of biomass moisture content on bioethanol
yields from steam pretreated switchgrass and sugarcane bagasse. Bioresour.
Technol. 102, 2651–2658.

Faith, W.L., 1945. Development of the scholler process in the United States. Ind. Eng.
Chem. 37, 9–11.

Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., Templeton, D., 2008.
Preparation of samples for compositional analysis. NREL LAP, 1617.

Hatziargyriou, N., Karakatsanis, T., Papadopoulos, M., 1993. Probabilistic load flow
in distribution systems containing dispersed wind power generation. IEEE
Trans. Power Syst. 8, 159–165.

Hsu, C.S., Robinson, P., 2007. Practical Advances in Petroleum Processing. Springer
Science & Business Media.

Hu, S., Towler, G., Zhu, X.X., 2002. Combine molecular modeling with optimization
to stretch refinery operation. Ind. Eng. Chem. 41, 825–841.

Krishna, S.H., Chowdary, G., Reddy, D.S., Ayyanna, C., 1999. Simultaneous
saccharification and fermentation of pretreated Antigonum leptopus(Linn)
leaves to ethanol. J. Chem. Technol. Biotechnol. 74, 1055–1060.

Krishna, S.H., Prasanthi, K., Chowdary, G., Ayyanna, C., 1998. Simultaneous
saccharification and fermentation of pretreated sugar cane leaves to ethanol.
Process Biochem. 33, 825–830.

Lamers, P., Tan, E.C., Searcy, E.M., Scarlata, C.J., Cafferty, K.G., Jacobson, J.J., 2015.
Strategic supply system design – a holistic evaluation of operational and
production cost for a biorefinery supply chain. Biofuel Bioprod. Biorefin. 9, 648–
660.
Landberg, L., 1999. Short-term prediction of the power production fromwind farms.
J. Wind Eng. Ind. Aerodyn. 80, 207–220.

Langholtz, M., Stokes, B., Eaton, L., 2016. 2016 Billion-Ton Report: Advancing
Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic
Availability of Feedstocks. In: 2016 Billion-Ton Report: Advancing Domestic
Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of
Feedstocks, Oak Ridge National Laboratory Oak Ridge, TN.

Li, C., Aston, J.E., Lacey, J.A., Thompson, V.S., Thompson, D.N., 2016. Impact of
feedstock quality and variation on biochemical and thermochemical
conversion. Renewable Sustainable Energy Rev. 65, 525–536.

Li, C., Cheng, G., Balan, V., Kent, M.S., Ong, M., Chundawat, S.P., daCosta Sousa, L.,
Melnichenko, Y.B., Dale, B.E., Simmons, B.A., 2011. Influence of physico-
chemical changes on enzymatic digestibility of ionic liquid and AFEX
pretreated corn stover. Bioresour. Technol. 102, 6928–6936.

Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P.,
Simmons, B.A., Singh, S., 2010. Comparison of dilute acid and ionic liquid
pretreatment of switchgrass: biomass recalcitrance, delignification and
enzymatic saccharification. Bioresour. Technol. 101, 4900–4906.

Li, C., Liang, L., Sun, N., Thompson, V.S., Xu, F., Narani, A., He, Q., Tanjore, D., Pray, T.
R., Simmons, B.A., 2017. Scale-up and process integration of sugar production by
acidolysis of municipal solid waste/corn stover blends in ionic liquids.
Biotechnol. Biofuels 10, 13.

Li, C., Tanjore, D., He, W., Wong, J., Gardner, J., Sale, K., Simmons, B., Singh, S., 2013.
Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic
hydrolysis of switchgrass. Biotechnol. Biofuels 6, 1–14.

Lloyd, T.A., Wyman, C.E., 2003. Application of a depolymerization model for
predicting thermochemical hydrolysis of hemicellulose. Appl. Biochem.
Biotechnol. 105, 53–67.

Lloyd, T.A., Wyman, C.E., 2005. Combined sugar yields for dilute sulfuric acid
pretreatment of corn stover followed by enzymatic hydrolysis of the remaining
solids. Bioresour. Technol. 96, 1967–1977.

Ray, A.E., Li, C., Thompson, Vicki S., Daubaras, Dayna L., Nagle, Nicholas J., Hartley,
Damon S., 2017. Biomass Blending and Densification: Impacts on Feedstock
Supply and Biochemical Conversion Performance. In: Tumuluru, J.S. (Ed.),
Biomass Volume Estimation and Valorization to Energy. INTECH.

Sadhukhan, J., Ng, K.S., Hernandez, E.M., 2014. Biorefineries and Chemical
Processes: Design, Integration and Sustainability Analysis. John Wiley & Sons.

SAS, JMP, 2017. Standard Least Squares Report and Options, http://www.
jmp.com/support/help/Standard_Least_Squares_Report_and_Options.shtml. In:
Fitting Linear Models, vol. 2017, JMP.com. http://www.jmp.com/support/help/
Standard_Least_Squares_Report_and_Options.shtml, pp. Analyze Common
Classes of Models.

Searcy, E., Flynn, P., Ghafoori, E., Kumar, A., 2007. The relative cost of biomass
energy transport. In: Mielenz, J.R., Klasson, K.T., Adney, W.S., McMillan, J.D.
(Eds.), Applied Biochemistry and Biotecnology: The Twenty-Eighth Symposium
Proceedings of the Twenty-Eight Symposium on Biotechnology for Fuels and
Chemicals Held April 30–May 3, 2006, in Nashville, Tennessee. Humana Press,
Totowa, NJ, pp. 639–652.

Shi, J., Thompson, V.S., Yancey, N.A., Stavila, V., Simmons, B.A., Singh, S., 2013.
Impact of mixed feedstocks and feedstock densification on ionic liquid
pretreatment efficiency. Biofuels 4, 63–72.

Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J.,
Templeton, D., Wolfe, J., 2008a. Determination of Total Solids in Biomass and
Total Dissolved Solids in Liquid Process Samples. National Renewable Energy
Laboratory.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.,
2008b. Determination of Structural Carbohydrates and Lignin in Biomass.
National Renewable Energy Laboratory.

Sun, N., Xu, F., Sathitsuksanoh, N., Thompson, V.S., Cafferty, K., Li, C., Tanjore, D.,
Narani, A., Pray, T.R., Simmons, B.A., Singh, S., 2015. Blending municipal solid
waste with corn stover for sugar production using ionic liquid process.
Bioresour. Technol. 186, 200–206.

Tao, L., Schell, D., Davis, R., Tan, E., Elander, R., Bratis, A. 2014. NREL 2012
Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via.
Technical Report, NREL/TP-5100-61563.

Thompson, D.N., 2016. Feedstock quality: A poorly understood but critical aspect
for the development of a biorefining industry. 38th Symposium on
Biotechnology for Fuels and Chemicals, 11–1.

Vera, R.M., Bura, R., Gustafson, R., 2015. Synergistic effects of mixing hybrid poplar
and wheat straw biomass for bioconversion processes. Biotechnol. Biofuels 8,
226.

Vincent, M., Pometto, A.L., van Leeuwen, J., 2014. Ethanol production via
simultaneous saccharification and fermentation of sodium hydroxide treated
corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum.
Bioresour. Technol. 158, 1–6.

Williams, C.L., Westover, T.L., Emerson, R.M., Tumuluru, J.S., Li, C., 2016. Sources of
biomass feedstock variability and the potential impact on biofuels production.
Bioenergy Res. 9, 1–14.

Wyman, C., Dale, B., Elander, R., Holtzapple, M., Ladisch, M., Lee, Y.Y., 2005a.
Comparative sugar recovery data from laboratory scale application of leading
pretreatment technologies to corn stover. Bioresour. Technol. 96, 2026–2032.

Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y., 2005b.
Coordinated development of leading biomass pretreatment technologies.
Bioresour. Technol. 96, 1959–1966.

http://dx.doi.org/10.1016/j.biortech.2017.06.156
http://dx.doi.org/10.1016/j.biortech.2017.06.156
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0005
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0005
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0005
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0010
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0010
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0010
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0015
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0015
https://www.google.com/patents/US2047314
https://www.google.com/patents/US2047314
http://www.eia.gov/dnav/pet/pet_pnp_cap1_dcu_nus_a.htm
http://www.eia.gov/dnav/pet/pet_pnp_cap1_dcu_nus_a.htm
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0030
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0030
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0030
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0030
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0035
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0035
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0035
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0035
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0050
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0050
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0050
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0055
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0055
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0065
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0065
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0065
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0070
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0070
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0075
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0075
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0080
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0080
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0080
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0085
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0085
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0085
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0090
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0090
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0090
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0090
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0095
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0095
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0105
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0105
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0105
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0110
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0110
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0110
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0110
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0115
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0115
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0115
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0115
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0120
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0120
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0120
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0120
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0125
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0125
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0125
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0130
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0130
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0130
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0135
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0135
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0135
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0140
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0140
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0140
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0140
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0145
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0145
http://www.jmp.com/support/help/Standard_Least_Squares_Report_and_Options.shtml
http://www.jmp.com/support/help/Standard_Least_Squares_Report_and_Options.shtml
http://www.jmp.com/support/help/Standard_Least_Squares_Report_and_Options.shtml
http://www.jmp.com/support/help/Standard_Least_Squares_Report_and_Options.shtml
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0155
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0155
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0155
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0155
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0155
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0155
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0160
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0160
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0160
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0165
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0165
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0165
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0165
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0170
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0170
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0170
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0175
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0175
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0175
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0175
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0190
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0190
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0190
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0195
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0195
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0195
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0195
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0200
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0200
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0200
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0205
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0205
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0205
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0210
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0210
http://refhub.elsevier.com/S0960-8524(17)31060-X/h0210

	Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply
	1 Introduction
	2 Materials and methods
	2.1 Biomass feedstocks and compositional analyses
	2.2 Pretreatments
	2.3 Enzymatic saccharification and HPLC analysis

	3 Results and discussion
	3.1 Least cost formulation to identify geographical location for a bio-refinery
	3.2 Design of experiments and predictive model development
	3.3 Glucose yield data analysis and visualization
	3.4 Predictive model validation

	4 Conclusions
	Acknowledgements
	Appendix A Supplementary data
	References


