Techno-Economic Analysis

We work with you to balance economics and sustainability.

We use techno-economic analyses (TEA) at different stages of the conversion process to provide a thorough understanding of the impact that technology and research breakthroughs have on the financial viability of your conversion strategy.

How It Works

TEA combines process modeling and engineering design with economic evaluation. It helps to assess the economic viability of a process and provides direction to research, development, investment, and policy making. TEA integrates well with the stage gate analysis process many private industry and R&D centers use for project development. 

TEA is a powerful tool that helps us eliminate bottlenecks and optimize your process. We utilize the pilot scale data and simulate the operation of a commercial scale facility. This simulation allows us to re-define the scope of future process research. 

Our Techno-Economic Analysis Methodologies

Techno-Economic Models

Our models cover the following unit processes:

  • Feedstock handling
  • Biomass Deconstruction
  • Fermentation
  • Product recovery
  • Wastewater treatment

We integrate these units and populate the model with data generated at the ABPDU or elsewhere and identify the most expensive processes and/or material handling steps. We can also identify geographical location related restrictions that can sway the economic analysis. Once such a performing model is developed, we are able to compare it to similarly developed models for other end-to-end technology pathways. Such comparisons can guide strategic decision-making, very early on.

Process Design

Design of a conceptual process entails ideas and simple assumptions drawn from literature and R&D data combined with collaboration across our engineering team to identify technical and economic hurdles.

Mass and Energy Balance

We use measured data from lab and scale-up studies to obtain near 100% mass balance closures, which are incorporated into the TEA model. Energy balance can also be pursued at this stage. Applying mass yields along with measured calorific values from biomass to fuels and chemicals (bomb calorimetry of solid and liquid samples) provides measured energy yields from the pathway. These energy yields along with energy consumption from each of the processes allow us to establish energy balance. Incorporating mass and energy balance into TEA ensures that the technology pathway is commercially feasible.

Cost Estimations

Along with mass and energy balance, scale-up data provides us an opportunity to identify commercial-scale equipment through TEA. Aspen Plus® and SuperPro® both provide options of equipment models closest the utilized equipment specifications. The TEA model estimates equipment cost, capital investment and its depreciation, and operating expenditure. By calculating a discounted cash flow rate of return, we can identify additional barriers for scale-up and re-focus research and development in those particular areas.

Profitability Analysis

Our profitability analysis factors in several pieces of information, such as annual production, unit production cost, revenues, gross margin, profit, return on investment, payback time, and capital investment.

Sensitivity Analysis

Sensitivity analyses are extremely useful in dealing with bottlenecks and identifying target yields and production scales. It allows for comparison of the magnitude of impact on process economics when varying process parameters for anticipated restrictions. Once a model for the entire process is developed, the tool can be used to carry out sensitivity analyses with respect to selected design variables.