From Bio-concept to Bioproduct

Developed. Demonstrated. Scaled.

Why you should partner with us
About Us

About Us

Welcome to the Advanced Biofuels and Bioproducts Process Demonstration Unit. Part of the Lawrence Berkeley National Labs, we were established by the United States Department of Energy to help ramp up the bioeconomy.

Bio Innovation

Bio-Innovation

We enable early stage advanced biofuels, biomaterials, and biochemicals product and process technologies to successfully scale from the lab to commercial relevance.

Partnership

Partnership

With experienced know-how, rigorous process optimization, and relentless monitoring of yield versus cost, we partner with you to lower your capex, opex, and risk.

Collaborations

Spotlight

What We Offer

Bio-derived Product Diversity

Whatever your novel or drop-in advanced bioproduct molecule is, we are ready.  We have the infrastructure and the expertise to optimize, scale-up, and demonstrate your bioproduct processes. Learn More.

Feedstock And Biomass Flexibility

Next-generation biomass-based inputs present limitless choices and new challenges. We’ll help you navigate the complexity and cost-effectively obtain the best outputs. Learn More.

Bio-concept Development & Validation

We’re completely impartial. When we provide third party validation of the commercial feasibility on your bio-concept, your stakeholders know you’re on the right track. Learn More.

Bio-process Prototyping & Optimization

Mitigating your risk during scale up and accelerating technology readiness levels is top of mind for us.  With our flexible, customizable equipment and experienced team we’re able to quickly prototype and adjust your bio-processes. Learn More.

Scale-up Integration & Demonstration

There are many steps to successfully move advanced bioproducts from the bench or lab to commercial scale deployment. We leverage capital project and industry best practices to design robust integrated pilot processes. Learn More.

Funding & Grant Proposals Support

The right data, access to networks, and an experienced team are a winning combination to help you raise funding and take your bio-innovation to market. Learn More.

 

Meet Our Team

 

Dr. Deepti Tanjore, Ph.D.

Research Scientist - Fermentation and Recovery

Fre Tachea

Senior Process Engineer

Akash Narani

Bio-Process/Facilities Engineer

Qian He

Senior Research Associate

Ling Liang

Process Engineer

Philip Coffman

Senior Research Associate

Tina Luong

Process Engineer

 

Eric Sundstrom

Senior Process Engineer

 

Sarah Brown

Research Associate

Newsroom

Press Releases

Publications

Predictive Modeling and Rheological Estimation of Mixed Biomass Feedstocks

In a collaborative effort with INL, SNL, and JBEI, predictive modeling was used to evaluate and optimize traditional pretreatment methods for biomass mixture compositions to maximize sugar yield and minimize furfural production. The collaboration encompassed compositional analysis of feedstocks, solids loading during pretreatment for mixed feedstock, enzymatic hydrolysis on unwashed solids, and sugar and furfural analysis. Predictive modeling could effectively identify the pretreatment catalyst and treatment conditions for an “optimal” biomass mixture and the optimal biomass mixture for a particular pretreatment system.

 

Process Scale-up of Municipal Solid Waste and Corn Stover Blends Conversion into Sugars

 

A collaboration between ABPDU, INL, and SNL as to whether blends of municipal solid waste (MSW) and corn stover (CS) could meet cost and quality targets yielded valuable results. The team successfully developed an integrated process for ionic liquid (IL) based deconstruction technologies. They also demonstrated a 200-fold scale up MSW/CS blends IL acidolysis. The scale up attempt and process integration will leverage the opportunity towards a cost-effective sugar/lignin production technology.

 

Determining the Impact of MSW as a Feedstock Blending Agent on Pretreatment Efficacy

Sixteen MSW blends provided by INL were screened using the 10mL tube reactor to identify the most promising blend (CS/MSW 4:1) for scaling up test based on the sugar yields as well as the feedstock cost. The collaboration also successfully demonstrated 600-fold (10mL to 6L) scale up of MSW/CS blends IL acidolysis.