From Bio-concept to Bioproduct

Developed. Demonstrated. Scaled.

About Us

About Us

Welcome to the Advanced Biofuels and Bioproducts Process Development Unit. Part of the Lawrence Berkeley National Labs, we were established by the United States Department of Energy to help ramp up the bioeconomy.

Bio Innovation


We enable early stage advanced biofuels, biomaterials, and biochemicals product and process technologies to successfully scale from the lab to commercial relevance.



With experienced know-how, rigorous process optimization, and relentless monitoring of yield versus cost, we partner with you to lower your capex, opex, and risk.


DOE/EERE/BETO Programs Support

ABPDU provides a critical resource and direct support for several DOE/EERE/BETO programs and consortia


What We Offer

Bio-derived Product Diversity

Whatever your novel or drop-in advanced bioproduct molecule is, we are ready.  We have the infrastructure and the expertise to optimize, scale-up, and demonstrate your bioproduct processes. Learn More.

Feedstock And Biomass Flexibility

Next-generation biomass-based inputs present limitless choices and new challenges. We’ll help you navigate the complexity and cost-effectively obtain the best outputs. Learn More.

Bio-concept Development & Validation

We’re completely impartial. When we provide third party validation of the commercial feasibility on your bio-concept, your stakeholders know you’re on the right track. Learn More.

Bio-process Prototyping & Optimization

Mitigating your risk during scale up and accelerating technology readiness levels is top of mind for us.  With our flexible, customizable equipment and experienced team we’re able to quickly prototype and adjust your bio-processes. Learn More.

Scale-up Integration & Demonstration

There are many steps to successfully move advanced bioproducts from the bench or lab to commercial scale deployment. We leverage capital project and industry best practices to design robust integrated pilot processes. Learn More.

Funding & Grant Proposals Support

The right data, access to networks, and an experienced team are a winning combination to help you raise funding and take your bio-innovation to market. Learn More.

Our Team

With decades of industry and related experience in diverse areas of energy, materials, nanotechnology, molecular biology, biofuels, and biochemical process development and manufacturing, we are proud to have a talented, multi-disciplinary team that pools their significant expertise to forge new ground in bio-innovation.



Akash Narani

Bio-Process/Facilities Engineer

Dr. Deepti Tanjore, Ph.D.

Research Scientist – Fermentation and Recovery

Eric Sundstrom

Senior Process Engineer


Press Releases



Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply


Commercial-scale bio-refineries are designed to process 2000 tons/day of single lignocellulosic biomass. Several geographical areas in the United States generate diverse feedstocks that, when combined, can be substantial for bio-based manufacturing. Blending multiple feedstocks is a strategy being investigated to expand bio-based manufacturing outside Corn Belt. In this study, the ABPDU in collaboration with Idaho and Sandia National Laboratories developed a model to predict continuous envelopes of biomass blends that are optimal for a given pretreatment condition to achieve a predetermined sugar yield or vice versa. For example, the model predicted more than 60% glucose yield can be achieved by treating an equal part blend of energy cane, corn stover, and switchgrass with alkali pretreatment at 120 °C for 14.8 h. By using ionic liquid to pretreat an equal part blend of the biomass feedstocks at 160 °C for 2.2 h, we achieved 87.6% glucose yield. Such a predictive model can potentially overcome dependence on a single feedstock.

Download to read more:

Streptomyces Venezualae as a Platform Organism for Biofuels

Biosynthesis of highly branched short and long-chain hydrocarbons would enable production of biofuels with desirable and tunable properties, including compression ignition fuels with low freezing points. Polyketide synthase (PKS) pathways are a promising route towards production of such compounds; engineering of PKS pathways favors a native host- this work therefore focuses on development of Streptomyces venezualae ATCC 10712 as a platform organism. While S. venezualae is well characterized for industrial production of antibiotics, currently available protocols for high density fermentation make use of rich media and high-purity dextrose. The viability of Streptomyces as a platform organism for large-scale cellulosic biofuel production is therefore currently unknown.

This study focuses on the development of protocols for high density fed-batch fermentation of S. venezualae with cellulosic sugar feed in minimal medium to evaluate the viability of this strain as a production organism for fuels and commodity chemicals.

Reducing Nutrient Supply in Mixed Feedstock Fermentation

Mixed feedstocks can help reduce the risk associated with feedstock availability for bio-based production of fuels and chemicals. This study was performed to evaluate cellulosic hydrolysates for fermentation to biofuels and also probe the possibility of reducing nutrient concentration in the broth media.

The study demonstrated that mixed feedstocks can release 80 -100% of the sugar that is obtained from corn stover alone. A hundred percent of the released sugars from mixed feedstocks can be converted to ethanol. The study also showed that alkali pretreated mixed feedstock has higher ethanol yield but lower glucose yield compared to IL pretreated mixed feedstock due to inhibition of microbial growth by residual EmimAcetate. The same ethanol yield can be achieved with lower nutrient supplied but with longer fermentation time.